
 

Abstract— Brushless DC machines utilizing high energy 

neodymium magnets are commonly used as generators to 

produce electricity and provide braking torques to a shaft. In this 

paper, we develop a set of design equations for three-phase 

generators with diode rectification. We define figures of merit 

beyond the traditional motor constant, Km, to be used in 

conjunction with a FEA magnetic field solution for optimizing 

generator dimensions. 

I.  INTRODUCTION 

rushless DC permanent magnet generators are popular for 

generating electricity in energy-harvesting applications. 

Generators utilizing high-energy rare-earth magnets can be 

very compact and produce useful levels of power from input 

sources that naturally operate at relatively low speeds. These 

generators can be optimized using FEA techniques, provided 

appropriate figure(s) of merit and performance metrics are 

utilized as design objectives and constraints. 

A BLDC generator for energy-harvesting was designed to 

produce 50-200 watts at shaft speeds of 500-1300 rpm. FEA 

techniques were used to optimize the dimensions with a target 

motor constant Km selected according to (1). Equation (1) 

represents generator output when speeds are low enough so 

that inductance can be ignored.  

 

         
   

          
 

 
   

 

  
         

            
     

           
 

(1)  

The machine was fabricated and performance testing was 

undertaken. Static torque constant and coil resistance 

measurements were consistent with FEA-computed values. 

Table I summarizes simulation and measured design 

parameters. At the target design speed, however, generator 

output power fell short of expectations predicted by (1). When 

driving loads were applied to characterize generator torque 

and current vs. speed, another departure from expected 

behavior was observed. 

At fixed load, higher applied torques caused operating 

speed to increase, while output power and current increased 

and eventually plateaued. Beyond a critical applied torque, 

however, all apparent generator braking resistance suddenly 

disappeared and uncontrolled runaway shaft speed occurred.  

The analysis in this paper describes the observed behavior. 

We begin with a simple single-phase circuit model (section 

A), extend to 3-phases with rectification (section B), and 

finally develop a set of design equations (section C). We 

conclude with recommended figures of merit for FEA-based 

generator optimization (section D).  

TABLE I - Generator parameters 

 Simulation Measurement 

Parameter 

 

 
ke (phase) 0.0489 v/rad/s 0.0567  v/rad/s 

resistance (phase) 0.272 ohm 0.3 ohm 

inductance (phase) 0.46 mH 0.555 mH 

KM 0.115 0.127 

# poles 16 
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II.  ANALYSIS OF BLDC GENERATORS 

Brushless DC generators are commonly characterized by 

their back emf constant, ke (2) and winding resistance, Rcoil. 

These parameters determine the motor constant, Km, an 

established winding-independent figure of merit (3).  

         
 

 
   (2)  

   
  

      
  

(3)  

Modeling a generator by these parameters alone is 

insufficient to explain the observed torque behavior. The coil 

inductance Lcoil must be considered.  

A.  Single-Phase Generator Analysis  

Table II summarizes the nomenclature used in section A. 

A single-phase generator can be modeled by the circuit 

shown in Fig. 1. Equation (4) describes the circuit behavior.  

TABLE II – NOMENCLATURE FOR SECTION A 

symbol quantity units 

ke back emf constant v/rad/s  

Km motor constant Nm/watt1/2 

ωm mechanical speed rad/s 

ωe electrical speed rad/s 

R resistance ohm 

L inductance henry 

p # poles  

I current amp 

P power watts 

T torque Nm 

 efficiency  

 

 
Fig. 1.  Circuit representation of a single-phase generator.  

                    
 

 
               

  

  
 

                        

(4)  

Solutions for instantaneous current, torque, and output power 

are given by (5), (6) and (7), respectively. Time waveforms 

are shown in Fig. 2.  
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Fig. 2.  Single-phase generator current, torque and power waveforms   

Averaging the torque and output power over the full cycle 

results in (8) and (9).  
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 (9)  

With increasing speed, the magnitudes of the current and 

power waveforms increase and approach an upper limit. 

Torque, however, increases to a maximum, then begins to 

fall. The maximum torque occurs at a critical speed (10). The 

magnitude of the current and average output power at critical 

speed are given by (11) and (12). Power at critical speed is 

exactly half its high-speed limiting value; current is      

times its high-speed limit.  
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 (12)  

For a particular generator, the maximum torque is 

independent of both winding and load resistances. Fig. 3 

shows torque versus speed behavior for various load 

resistances. All curves have the same maximum value. 

Altering the load resistance only changes the speed at which 



 

peak torque occurs. Application of torques above the limit 

will cause uncontrolled acceleration.  

 
Fig 3.  Effect on Braking Torque vs. Speed as resistance is changed 

Recognizing that inductance plays a critical role in 

generator performance, we propose a supplementary figure of 

merit KL as defined by (13). Like its counterpart Km, KL is 

winding-independent. For a fixed coil volume, Rcoil and Lcoil 

are both proportional to number of turns squared, while back 

emf constant ke is proportional to number of turns. 

Consequently, not only is the maximum torque T
*
 

independent of load resistance, it is also independent of the 

number of turns. 

   
  

      
  

(13)  

Winding-independent generator metrics Km and KL 

provide useful guidance when sizing a generator for a 

particular application. Equation (1) predicts power output at 

low speed, i.e.,  ω      Equation (14) gives the maximum 

controllable torque the generator can sustain.  

    
  
 

  
 (14)  

Returning to Fig. 2, we observe current, power, and torque 

waveforms are sinusoidal, characterized by a magnitude, 

frequency, phase, and dc-offset.  Thus, we rewrite (5)-(7), as 

(15)-(17). Power (17) is a double frequency waveform with 

minimum value equal to zero. Torque is also a double 

frequency waveform, but has a dc offset and phase shift 

relative to the current waveform.  
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Next, we compare uni-phase results to those of a 3-phase 

diode-rectified circuit.  

B.  Three-Phase Generator and Equivalent Uni-Phase Circuit  

A common energy harvesting system utilizes a 3-phase 

generator and 6-diode rectifier like circuit A shown in Fig. 4.  

 Fig. 4.  Circuit A : 3-phase generator with diode rectifier  

Circuit A was simulated in SPICE using parameters for the 

generator in Table I. SPICE simulations with ideal diodes 

reveal that a rectified generator is a three-phases-on device. 

For typical values of R, L, and V, phase currents are nearly 

sinusoidal, and a single phase current matches the rectified 

load current over a 60 degree span centered at the peak. Fig.5 

shows phase current and load current in circuit A for typical 

generator parameters.    

 
Fig. 5.  Typical phase and load currents in Circuit A – all 3 phases are active 

throughout the cycle 

We conclude the effect of diode switching is to rearrange 

the phases connected across the load resistor every 60 

electrical degrees. Within a 60° span the circuit topology is 

unchanged, and can be represented by circuit B shown in Fig. 

6.  

 

Fig. 6.  Circuit B : 3-phase generator without diodes 

Current in the upper phase of circuit B closely matches the 

phase current for the diode-rectified circuit A. The agreement 
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is within 0.5% for typical generator values. Currents in the 

other two phases of circuit B (those connected in parallel to 

the load resistor) are different in magnitude from each other 

and not in phase.  

The analytical solution for current through the load resistor 

of circuit B is sinusoidal of magnitude given by (18).  

        
       

                 
 
            

 
 

(18)  

This solution suggests the construction of equivalent circuit C 

shown in Fig. 7. Circuits B and C produce identical load 

current.  

 
Fig 7. Circuit C : equivalent uni-phase model to circuit B (same Iload) 

Provided phase current waveforms remain sinusoidal, the 

current flowing in equivalent circuit C provides a good 

approximation to phase current in a 3-phase diode-rectified 

generator (Fig. 8). The other two phase currents are identical, 

just shifted 120 degrees. 

 
Fig. 8.  Uni-phase equivalent (circuit C) compared to SPICE rectified circuit 

A at high L (sinusoidal phase current) 

At low inductance or low speed (eL small), rectified 

phase currents in circuit A at not sinusoidal (Fig. 9). Under 

these conditions, we would not necessarily expect circuits A, 

B, and C to produce similar load current. However, SPICE 

results show that they are close enough to accept results of 

circuit C integrated over 60 deg to be a reasonable 

approximation to 3-phase diode-rectified circuit A.  

 
Fig. 9.  Uni-phase compared to SPICE rectified circuit at low L (non-
sinusoidal phase current) 

C.  Three-Phase Rectified Generator Design Equations 

Using equivalent circuit C to approximate phase currents 

in a rectified generator, we develop a set of generator design 

equations. The equations use per-phase generator parameters 

as defined in Table III. 

TABLE III – NOMENCLATURE FOR SECTION C 

symbol quantity units 

ke phase back emf  per 

mechanical speed (ct-L) 

v/rad/s 

m mechanical speed rad/s 

e electrical speed rad/s 

Rph phase resistance (ct-L) ohm 

Lph phase inductance (ct-L) henry 

p # poles  

 

Circuit C phase current is given by (19) and average 

rectified load current is given by (20). 
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(20)  

Average power delivered to the load resistor is formed from 

the topmost 60° interval of the sinusoidal load current 

squared (21). 

       
   

 
              

 
   

 
   

 
 

   

 
                

   
 

         
     

   
                    

  
 

(21)  

Maximum output power can be achieved by selecting Rload 

Current Waveforms at 320 hz.

rectified Iload Iphase uni-phase

Current Waveforms at 80 hz.

rectified Iload Iphase uni-phase



 

according to (22). 

     
  

 

 
    

      
   

  (22)  

Power consumed in the phase windings is the sum of the 

three sinusoidal phase currents squared times the phase 

resistance. The result is constant in time (23). 

        
 

 
           

 

 
       

   
 

        
     

   
                    

  
 

(23)  

Average torque and generator efficiency are given by (24) 

and (25), respectively. 

                     

   
   

                        

         
     

   
                    

  
 

(24)  

  
      

              

 
             

                   
 (25)  

Using Table I generator parameters and a load resistance 

of 1 ohm, equations (20)-(24) predict current, power, and 

torque shown in Figs. 10, 11 and 12, respectively. Fig. 13 

shows how the equations compare to SPICE over a wide 

speed range. The largest discrepancy is in the ohmic losses at 

low speed where the phase currents are not sinusoidal. 

Overall, the correlation is good. 

 

Fig 10. Load current equation (19) vs. speed compared to SPICE rectified 

model 

 

Fig 11. Average power equations (21),(23) vs. speed compared to SPICE 

rectified model  

 

Fig 12. Average torque equation (24) vs. speed compared to SPICE rectified 

model 

 

Fig 13. Design equations compared to SPICE simulation results vs. speed 

Rectified current, power and torque curves are similar to 

the uni-phase case. Load current and power increase with 

speed and approach limiting values. Torque rises to a 

maximum at a critical speed, then declines. The value of the 

maximum torque is given by (26). The phase angle between 

back emf and phase current at * is 45°. Unlike the uni-phase 

result (10), resistance appears in the three-phase T* equation. 

Peak torque is actually a function of the ratio Rload/Rph, but 

the dependence is weak, declining less than 9% from shorted 

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000

cu
rr

en
t 

[A
m

p
]

electrical speed [rad/s]

Peak Current

eqn (19) SPICE

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500 4000

p
o

w
er

 [W
at

t]

electrical speed [rad/s]

Average Power

Pload (21) Pload SPICE Pohmic (23) Pohmic SPICE

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000

to
rq

u
e 

[N
m

]

electrical speed [rad/s]

Average Torque

eqn (24) SPICE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 500 1000 1500 2000 2500 3000 3500

d
e

si
g

n
 e

q
n

 r
e

su
lt

 /
 a

v
g

'd
 S

P
IC

E
 w

a
ve

fo
rm

electrical speed [rad/s]

Design Equations Compared to Rectified SPICE Model

avg current Pload Pohmic torque



 

output to infinite load resistance (Fig. 14). If we choose 

                              , the resistance 

terms cancel, and we can approximate T* as (27).  

    
   

 

      

                     

           
    

     
  

           

    
 

(26)  
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Fig 14. Weak dependence of peak torque T* on resistance ratio 

Current and power at critical speed are given by (28) and 

(29). As in the uni-phase case, power at critical speed is 

exactly half its high-speed limiting value; current is      

times its high-speed limit. 

The transition from two-phases-on (low speed / non-

sinusoidal phase current) to three-phases-on (high speed / 

sinusoidal phase current) is determined by the circuit L/R. If 

we compute the speed at which the L/R time constant (30) 

coincides with the rectification interval (1/6 electrical period), 

we get (31). This transition speed is precisely /3 times *. 

We conclude that the critical (peak torque) speed coincides 

with the transition from non-sinusoidal to purely sinusoidal 

phase currents.  
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D.  Figure of Merit for Generator Design  

In the past, we neglected inductance, and used motor 

constant as the sole figure of merit in generator design. Since 

Km is winding-independent, it was useful in comparing 

machines of different types wound for different output 

voltages. In design, it allowed optimizing generator 

dimensions without pre-selecting the # turns. A typical design 

proceeded as follows: 

 select efficiency , spin speed m, and target output 

power, Pload 

 use (1) to determine the required motor constant Km  

 use ANSYS to compute Km for different topologies and 

dimensions; optimize 

 when optimization is complete, wind the machine to 

deliver power at the desired voltage  

We seek a form similar to (1) that accounts for inductance 

and rectification. Combining (21) and (25), we can derive that 

form. The equation is more complicated, but it remains 

winding-independent, and lends itself to design procedures 

used in the past. Two different forms of the equation are 

presented. 

Defining   to be the ratio of load to phase resistance (32), 

efficiency can be expressed as (33). Substituting (32) for 

Rload in (21) gives the new design equation (34). Motor 

constant appears, as before, but the efficiency dependence 

becomes a more complicated, and phase L/R ratio appears. 

For design, choose desired efficiency, spin speed, and target 

output power, then optimize according to (32) with ANSYS-

calculated variables Km and Lph/Rph. 
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(34)  

Alternatively, we can express Rload as a function of 

efficiency and Rphase (35), eliminate Rload, and simplify to (36). 

The new parameter D appears in the denominator and is a 

function of both efficiency and phase L/R. 
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(36)  
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III.  CONCLUSIONS 

The behavior of three-phase brushless DC generators with 

diode rectification is closely modeled by the equations 

presented in this paper. Although the analysis relies on a 

simple model and assumes the generator operates as a three-

phases-on device, it is accurate over a wide speed range, 

including low speeds, when generator phase currents are not 

sinusoidal.  

When designing a generator, inductance must be 

considered because it limits output power and sets the 

maximum torque the machine can sustain. This is true for 

uni-phase as well as three-phase rectified generation. 

A winding-independent metric that includes L/R as well as 

Km has been derived for use in ANSYS optimization. In 

general, high motor constant and low inductance are desirable 

characteristics.  

IV.  OPEN ITEMS AND FUTURE WORK 

In practice, diodes have a forward voltage drop and loads 

are not purely resistive, e.g., battery charging at constant 

voltage with ESR. Both effects could be incorporated in this 

model by modifying the load. Conclusions and figures of 

merit still apply; only the interpretation of Rload will to 

change. 

Our derivation assumes flux linkages are independent of 

speed (no eddy currents), sinusoidal in rotation angle, and 

independent of current. For deep saturation and/or high load 

current, the latter two assumptions may not be appropriate. 

Under these conditions, we suggest using ANSYS to 

calculate phase flux linkages,  as functions of position 

and current. Back emf, ke(,I), and inductance, L(,I), would 

be computed as d/d and as d/d, respectively. A transient 

solution to the equivalent circuit could be obtained using 

MATLAB or Simulink.  

 


