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Abstract— Brushless DC machines utilizing high energy
neodymium magnets are commonly used as generators to
produce electricity and provide braking torques to a shaft. In this
paper, we develop a set of design equations for three-phase
generators with diode rectification. We define figures of merit
beyond the traditional motor constant, K., to be used in
conjunction with a FEA magnetic field solution for optimizing
generator dimensions.

|. INTRODUCTION

Brushless DC permanent magnet generators are popular for
generating electricity in energy-harvesting applications.
Generators utilizing high-energy rare-earth magnets can be
very compact and produce useful levels of power from input
sources that naturally operate at relatively low speeds. These
generators can be optimized using FEA techniques, provided
appropriate figure(s) of merit and performance metrics are
utilized as design objectives and constraints.

A BLDC generator for energy-harvesting was designed to
produce 50-200 watts at shaft speeds of 500-1300 rpm. FEA
techniques were used to optimize the dimensions with a target
motor constant K., selected according to (1). Equation (1)
represents generator output when speeds are low enough so
that inductance can be ignored.
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The machine was fabricated and performance testing was
undertaken. Static torque constant and coil resistance
measurements were consistent with FEA-computed values.
Table | summarizes simulation and measured design
parameters. At the target design speed, however, generator
output power fell short of expectations predicted by (1). When
driving loads were applied to characterize generator torque
and current vs. speed, another departure from expected
behavior was observed.

At fixed load, higher applied torques caused operating
speed to increase, while output power and current increased
and eventually plateaued. Beyond a critical applied torque,
however, all apparent generator braking resistance suddenly
disappeared and uncontrolled runaway shaft speed occurred.

The analysis in this paper describes the observed behavior.
We begin with a simple single-phase circuit model (section
A), extend to 3-phases with rectification (section B), and
finally develop a set of design equations (section C). We
conclude with recommended figures of merit for FEA-based
generator optimization (section D).

TABLE I - Generator parameters

Simulation

Measurement

Parameter
ke (phase) 0.0489 v/rad/s 0.0567 v/rad/s
resistance (phase) 0.272 ohm 0.3 ohm
inductance (phase) 0.46 mH 0.555 mH
Kum 0.115 0.127

# poles

16




Il. ANALYSIS OF BLDC GENERATORS

Brushless DC generators are commonly characterized by
their back emf constant, k. (2) and winding resistance, R,
These parameters determine the motor constant, K, an
established winding-independent figure of merit (3).
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Modeling a generator by these parameters alone is
insufficient to explain the observed torque behavior. The coil
inductance L., must be considered.

A. Single-Phase Generator Analysis

Table Il summarizes the homenclature used in section A.
A single-phase generator can be modeled by the circuit
shown in Fig. 1. Equation (4) describes the circuit behavior.

TABLE Il — NOMENCLATURE FOR SECTION A

symbol quantity units
ke back emf constant v/rad/s
Kun motor constant Nm/watt2
Wm mechanical speed rad/s
we electrical speed rad/s
R resistance ohm
L inductance henry
p # poles
/ current amp
P power watts
T torque Nm
n efficiency
Rcoil Lcoil
I\M FaTa’a'al

v éRload
<

Fig. 1. Circuit representation of a single-phase generator.
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Solutions for instantaneous current, torque, and output power
are given by (5), (6) and (7), respectively. Time waveforms
are shown in Fig. 2.
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Fig. 2. Single-phase generator current, torque and power waveforms

Averaging the torque and output power over the full cycle
results in (8) and (9).
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With increasing speed, the magnitudes of the current and
power waveforms increase and approach an upper limit.
Torque, however, increases to a maximum, then begins to
fall. The maximum torque occurs at a critical speed (10). The
magnitude of the current and average output power at critical
speed are given by (11) and (12). Power at critical speed is
exactly half its high-speed limiting value; current is 1/+/2
times its high-speed limit.
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For a particular generator, the maximum torque is
independent of both winding and load resistances. Fig. 3
shows torque versus speed behavior for various load
resistances. All curves have the same maximum value.
Altering the load resistance only changes the speed at which



peak torque occurs. Application of torques above the limit
will cause uncontrolled acceleration.
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Fig 3. Effect on Braking Torque vs. Speed as resistance is changed

Recognizing that inductance plays a critical role in
generator performance, we propose a supplementary figure of
merit K. as defined by (13). Like its counterpart K, K is
winding-independent. For a fixed coil volume, R and Legj
are both proportional to number of turns squared, while back
emf constant k. is proportional to number of turns.
Consequently, not only is the maximum torque T~
independent of load resistance, it is also independent of the
number of turns.

K= ke/ N (13)

Winding-independent generator metrics K, and K_
provide useful guidance when sizing a generator for a
particular application. Equation (1) predicts power output at
low speed, i.e., Lw, — 0. Equation (14) gives the maximum
controllable torque the generator can sustain.
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Returning to Fig. 2, we observe current, power, and torque
waveforms are sinusoidal, characterized by a magnitude,
frequency, phase, and dc-offset. Thus, we rewrite (5)-(7), as
(15)-(17). Power (17) is a double frequency waveform with
minimum value equal to zero. Torque is also a double
frequency waveform, but has a dc offset and phase shift
relative to the current waveform.
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Next, we compare uni-phase results to those of a 3-phase
diode-rectified circuit.

B. Three-Phase Generator and Equivalent Uni-Phase Circuit

A common energy harvesting system utilizes a 3-phase
generator and 6-diode rectifier like circuit A shown in Fig. 4.
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Fig. 4. Circuit A : 3-phase generator with diode rectifier
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Circuit A was simulated in SPICE using parameters for the
generator in Table I. SPICE simulations with ideal diodes
reveal that a rectified generator is a three-phases-on device.
For typical values of R, L, and V, phase currents are nearly
sinusoidal, and a single phase current matches the rectified
load current over a 60 degree span centered at the peak. Fig.5
shows phase current and load current in circuit A for typical
generator parameters.
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Fig. 5. Typical phase and load currents in Circuit A — all 3 phases are active
throughout the cycle

We conclude the effect of diode switching is to rearrange
the phases connected across the load resistor every 60
electrical degrees. Within a 60° span the circuit topology is
unchanged, and can be represented by circuit B shown in Fig.
6.
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Fig. 6. Circuit B : 3-phase generator without diodes

Current in the upper phase of circuit B closely matches the
phase current for the diode-rectified circuit A. The agreement



is within 0.5% for typical generator values. Currents in the
other two phases of circuit B (those connected in parallel to
the load resistor) are different in magnitude from each other
and not in phase.

The analytical solution for current through the load resistor
of circuit B is sinusoidal of magnitude given by (18).
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This solution suggests the construction of equivalent circuit C
shown in Fig. 7. Circuits B and C produce identical load

current.
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Fig 7. Circuit C : equivalent uni-phase model to circuit B (same licaq)

Provided phase current waveforms remain sinusoidal, the
current flowing in equivalent circuit C provides a good
approximation to phase current in a 3-phase diode-rectified
generator (Fig. 8). The other two phase currents are identical,
just shifted 120 degrees.

Current Waveforms at 320 hz.
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Fig. 8. Uni-phase equivalent (circuit C) compared to SPICE rectified circuit
A at high oL (sinusoidal phase current)

At low inductance or low speed (weL small), rectified
phase currents in circuit A at not sinusoidal (Fig. 9). Under
these conditions, we would not necessarily expect circuits A,
B, and C to produce similar load current. However, SPICE
results show that they are close enough to accept results of
circuit C integrated over 60 deg to be a reasonable
approximation to 3-phase diode-rectified circuit A.

Current Waveforms at 80 hz.
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Fig. 9. Uni-phase compared to SPICE rectified circuit at low oL (non-
sinusoidal phase current)

C. Three-Phase Rectified Generator Design Equations

Using equivalent circuit C to approximate phase currents
in a rectified generator, we develop a set of generator design
equations. The equations use per-phase generator parameters
as defined in Table I11.

TABLE 111 - NOMENCLATURE FOR SECTION C

symbol quantity units

ke phase back emf per v/rad/s
mechanical speed (ct-L)

Om mechanical speed rad/s
We electrical speed rad/s
Ron phase resistance (ct-L) ohm
Lph phase inductance (ct-L) henry
p # poles

Circuit C phase current is given by (19) and average
rectified load current is given by (20).
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Average power delivered to the load resistor is formed from
the topmost 60° interval of the sinusoidal load current
squared (21).
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Maximum output power can be achieved by selecting Rqsq



according to (22).

Rigaa = 2 Rzth + Lff;hwez (22)

Power consumed in the phase windings is the sum of the
three sinusoidal phase currents squared times the phase
resistance. The result is constant in time (23).

_ 3 2
Ponmic = ERPhllph(t)l
_ 54R,kZw? (23)
p2(9(R3, + L2, w2) + 12RynRi00a + 4R%,0q)

Average torque and generator efficiency are given by (24)
and (25), respectively.
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Using Table | generator parameters and a load resistance
of 1 ohm, equations (20)-(24) predict current, power, and
torque shown in Figs. 10, 11 and 12, respectively. Fig. 13
shows how the equations compare to SPICE over a wide
speed range. The largest discrepancy is in the ohmic losses at
low speed where the phase currents are not sinusoidal.
Overall, the correlation is good.
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Fig 10. Load current equation (19) vs. speed compared to SPICE rectified
model
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Fig 11. Average power equations (21),(23) vs. speed compared to SPICE
rectified model
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Fig 12. Average torque equation (24) vs. speed compared to SPICE rectified
model

Design Equations Compared to Rectified SPICE Model
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Fig 13. Design equations compared to SPICE simulation results vs. speed

Rectified current, power and torque curves are similar to
the uni-phase case. Load current and power increase with
speed and approach limiting values. Torque rises to a
maximum at a critical speed, then declines. The value of the
maximum torque is given by (26). The phase angle between
back emf and phase current at o* is 45°. Unlike the uni-phase
result (10), resistance appears in the three-phase T* equation.
Peak torque is actually a function of the ratio Rjead/Rphn, but
the dependence is weak, declining less than 9% from shorted



output to infinite load resistance (Fig. 14). If we choose
Ripaa/Rpn =1/2(3V3/2m + 1) = 0.9135, the resistance
terms cancel, and we can approximate T* as (27).
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Fig 14. Weak dependence of peak torque T* on resistance ratio

Current and power at critical speed are given by (28) and
(29). As in the uni-phase case, power at critical speed is
exactly half its high-speed limiting value; current is 1/+/2
times its high-speed limit.
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The transition from two-phases-on (low speed / non-
sinusoidal phase current) to three-phases-on (high speed /
sinusoidal phase current) is determined by the circuit L/R. If
we compute the speed at which the L/R time constant (30)
coincides with the rectification interval (1/6 electrical period),
we get (31). This transition speed is precisely n/3 times o*.
We conclude that the critical (peak torque) speed coincides
with the transition from non-sinusoidal to purely sinusoidal
phase currents.
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D. Figure of Merit for Generator Design

In the past, we neglected inductance, and used motor
constant as the sole figure of merit in generator design. Since
K. is winding-independent, it was useful in comparing
machines of different types wound for different output
voltages. In design, it allowed optimizing generator
dimensions without pre-selecting the # turns. A typical design
proceeded as follows:

o select efficiency m, spin speed oy, and target output

power, Pjoad

o use (1) to determine the required motor constant K,

e use ANSYS to compute K., for different topologies and

dimensions; optimize

e when optimization is complete, wind the machine to

deliver power at the desired voltage

We seek a form similar to (1) that accounts for inductance
and rectification. Combining (21) and (25), we can derive that
form. The equation is more complicated, but it remains
winding-independent, and lends itself to design procedures
used in the past. Two different forms of the equation are
presented.

Defining a to be the ratio of load to phase resistance (32),
efficiency can be expressed as (33). Substituting (32) for
Rload in (21) gives the new design equation (34). Motor
constant appears, as before, but the efficiency dependence
becomes a more complicated, and phase L/R ratio appears.
For design, choose desired efficiency, spin speed, and target
output power, then optimize according to (32) with ANSYS-
calculated variables Km and Lph/Rph.

Ripga = a- Rph (32)
3v3+2 6
n = (3vV3+2n)a ae T n (33)
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Alternatively, we can express Ry, as a function of
efficiency and Rpnase (35), eliminate Ryqee9, and simplify to (36).
The new parameter D appears in the denominator and is a
function of both efficiency and phase L/R.
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I1l. CONCLUSIONS

The behavior of three-phase brushless DC generators with
diode rectification is closely modeled by the equations
presented in this paper. Although the analysis relies on a
simple model and assumes the generator operates as a three-
phases-on device, it is accurate over a wide speed range,
including low speeds, when generator phase currents are not
sinusoidal.

When designing a generator, inductance must be
considered because it limits output power and sets the
maximum torque the machine can sustain. This is true for
uni-phase as well as three-phase rectified generation.

A winding-independent metric that includes L/R as well as
Kmn has been derived for use in ANSYS optimization. In
general, high motor constant and low inductance are desirable
characteristics.

IV. OPEN ITEMS AND FUTURE WORK

In practice, diodes have a forward voltage drop and loads
are not purely resistive, e.g., battery charging at constant
voltage with ESR. Both effects could be incorporated in this
model by modifying the load. Conclusions and figures of
merit still apply; only the interpretation of R,y will to
change.

Our derivation assumes flux linkages are independent of
speed (no eddy currents), sinusoidal in rotation angle, and
independent of current. For deep saturation and/or high load
current, the latter two assumptions may not be appropriate.
Under these conditions, we suggest using ANSYS to
calculate phase flux linkages, A=N¢, as functions of position
and current. Back emf, ke(6,1), and inductance, L(6,1), would
be computed as dA/d6 and as dA/dI, respectively. A transient
solution to the equivalent circuit could be obtained using
MATLAB or Simulink.



